12 resultados para molecular clock

em National Center for Biotechnology Information - NCBI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hypothesis of the molecular evolutionary clock asserts that informational macromolecules (i.e., proteins and nucleic acids) evolve at rates that are constant through time and for different lineages. The clock hypothesis has been extremely powerful for determining evolutionary events of the remote past for which the fossil and other evidence is lacking or insufficient. I review the evolution of two genes, Gpdh and Sod. In fruit flies, the encoded glycerol-3-phosphate dehydrogenase (GPDH) protein evolves at a rate of 1.1 × 10−10 amino acid replacements per site per year when Drosophila species are compared that diverged within the last 55 million years (My), but a much faster rate of ≈4.5 × 10−10 replacements per site per year when comparisons are made between mammals (≈70 My) or Dipteran families (≈100 My), animal phyla (≈650 My), or multicellular kingdoms (≈1100 My). The rate of superoxide dismutase (SOD) evolution is very fast between Drosophila species (16.2 × 10−10 replacements per site per year) and remains the same between mammals (17.2) or Dipteran families (15.9), but it becomes much slower between animal phyla (5.3) and still slower between the three kingdoms (3.3). If we assume a molecular clock and use the Drosophila rate for estimating the divergence of remote organisms, GPDH yields estimates of 2,500 My for the divergence between the animal phyla (occurred ≈650 My) and 3,990 My for the divergence of the kingdoms (occurred ≈1,100 My). At the other extreme, SOD yields divergence times of 211 My and 224 My for the animal phyla and the kingdoms, respectively. It remains unsettled how often proteins evolve in such erratic fashion as GPDH and SOD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the evolution of glycerol-3-phosphate dehydrogenase (Gpdh). The rate of amino acid replacements is 1 x 10(-10)/site/year when Drosophila species are compared. The rate is 2.7 times greater when Drosophila and Chymomyza species are compared; and about 5 times greater when any of those species are compared with the medfly Ceratitis capitata. This rate of 5 x 10(-10)/site/year is also the rate observed in comparisons between mammals, or between different animal phyla, or between the three multicellular kingdoms. We have also studied the evolution of Cu,Zn superoxide dismutase (Sod). The rate of amino acid replacements is about 17 x 10(-10)/site/year when comparisons are made between dipterans or between mammals, but only 5 x 10(-10) when animal phyla are compared, and only 3 x 10(-10) when the multicellular kingdoms are compared. The apparent decrease by about a factor of 5 in the rate of SOD evolution as the divergence between species increases can be consistent with the molecular clock hypothesis by assuming the covarion hypothesis (namely, that the number of amino acids that can change is constant, but the set of such amino acids changes from time to time and from lineage to lineage). However, we know of no model consistent with the molecular clock hypothesis that would account for the increase in the rate of GPDH evolution as the divergence between species increases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The phylogeny of human T cell lymphotropic virus type II (HTLV-II) was investigated by using strains isolated from Amerindian and Pygmy tribes, in which the virus is maintained primarily through mother-to-child transmission via breast-feeding, and strains from intravenous drug users (IDUs), in which spread is mainly blood-borne via needle sharing. Molecular clock analysis showed that HTLV-II has two different evolutionary rates with the molecular clock for the virus in IDUs ticking 150–350 times faster than the one in endemically infected tribes: 2.7 × 10−4 compared with 1.71/7.31 × 10−7 nucleotide substitutions per site per year in the long terminal repeat region. This dramatic acceleration of the evolutionary rate seems to be related with the mode of transmission. Mathematical models showed the correlation of these two molecular clocks with an endemic spread of HTLV-II in infected tribes compared with the epidemic spread in IDUs. We also noted a sharp increase in the population size of the virus among IDUs during the last decades probably caused by the worldwide increase in intravenous drug use.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Strong positive Darwinian selection acts on two sperm fertilization proteins, lysin and 18-kDa protein, from abalone (Haliotis). To understand the phylogenetic context for this dramatic molecular evolution, we obtained sequences of mitochondrial cytochrome c oxidase subunit I (mtCOI), and genomic sequences of lysin, 18-kDa, and a G protein subunit. Based on mtDNA differentiation, four north Pacific abalone species diverged within the past 2 million years (Myr), and remaining north Pacific species diverged over a period of 4–20 Myr. Between-species nonsynonymous differences in lysin and 18-kDa exons exceed nucleotide differences in introns by 3.5- to 24-fold. Remarkably, in some comparisons nonsynonymous substitutions in lysin and 18-kDa genes exceed synonymous substitutions in mtCOI. Lysin and 18-kDa intron/exon segments were sequenced from multiple red abalone individuals collected over a 1,200-km range. Only two nucleotide changes and two sites of slippage variation were detected in a total of >29,000 nucleotides surveyed. However, polymorphism in mtCOI and a G protein intron was found in this species. This finding suggests that positive selection swept one lysin allele and one 18-kDa allele to fixation. Similarities between mtCOI and lysin gene trees indicate that rapid adaptive evolution of lysin has occurred consistently through the history of the group. Comparisons with mtCOI molecular clock calibrations suggest that nonsynonymous substitutions accumulate 2–50 times faster in lysin and 18-kDa genes than in rapidly evolving mammalian genes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

When many protein sequences are available for estimating the time of divergence between two species, it is customary to estimate the time for each protein separately and then use the average for all proteins as the final estimate. However, it can be shown that this estimate generally has an upward bias, and that an unbiased estimate is obtained by using distances based on concatenated sequences. We have shown that two concatenation-based distances, i.e., average gamma distance weighted with sequence length (d2) and multiprotein gamma distance (d3), generally give more satisfactory results than other concatenation-based distances. Using these two distance measures for 104 protein sequences, we estimated the time of divergence between mice and rats to be approximately 33 million years ago. Similarly, the time of divergence between humans and rodents was estimated to be approximately 96 million years ago. We also investigated the dependency of time estimates on statistical methods and various assumptions made by using sequence data from eubacteria, protists, plants, fungi, and animals. Our best estimates of the times of divergence between eubacteria and eukaryotes, between protists and other eukaryotes, and between plants, fungi, and animals were 3, 1.7, and 1.3 billion years ago, respectively. However, estimates of ancient divergence times are subject to a substantial amount of error caused by uncertainty of the molecular clock, horizontal gene transfer, errors in sequence alignments, etc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Estimation of evolutionary distances has always been a major issue in the study of molecular evolution because evolutionary distances are required for estimating the rate of evolution in a gene, the divergence dates between genes or organisms, and the relationships among genes or organisms. Other closely related issues are the estimation of the pattern of nucleotide substitution, the estimation of the degree of rate variation among sites in a DNA sequence, and statistical testing of the molecular clock hypothesis. Mathematical treatments of these problems are considerably simplified by the assumption of a stationary process in which the nucleotide compositions of the sequences under study have remained approximately constant over time, and there now exist fairly extensive studies of stationary models of nucleotide substitution, although some problems remain to be solved. Nonstationary models are much more complex, but significant progress has been recently made by the development of the paralinear and LogDet distances. This paper reviews recent studies on the above issues and reports results on correcting the estimation bias of evolutionary distances, the estimation of the pattern of nucleotide substitution, and the estimation of rate variation among the sites in a sequence.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Phylogenetic analyses are increasingly used in attempts to clarify transmission patterns of human immunodeficiency virus type 1 (HIV-1), but there is a continuing discussion about their validity because convergent evolution and transmission of minor HIV variants may obscure epidemiological patterns. Here we have studied a unique HIV-1 transmission cluster consisting of nine infected individuals, for whom the time and direction of each virus transmission was exactly known. Most of the transmissions occurred between 1981 and 1983, and a total of 13 blood samples were obtained approximately 2-12 years later. The p17 gag and env V3 regions of the HIV-1 genome were directly sequenced from uncultured lymphocytes. A true phylogenetic tree was constructed based on the knowledge about when the transmissions had occurred and when the samples were obtained. This complex, known HIV-1 transmission history was compared with reconstructed molecular trees, which were calculated from the DNA sequences by several commonly used phylogenetic inference methods [Fitch-Margoliash, neighbor-joining, minimum-evolution, maximum-likelihood, maximum-parsimony, unweighted pair group method using arithmetic averages (UPGMA), and a Fitch-Margoliash method assuming a molecular clock (KITSCH)]. A majority of the reconstructed trees were good estimates of the true phylogeny; 12 of 13 taxa were correctly positioned in the most accurate trees. The choice of gene fragment was found to be more important than the choice of phylogenetic method and substitution model. However, methods that are sensitive to unequal rates of change performed more poorly (such as UPGMA and KITSCH, which assume a constant molecular clock). The rapidly evolving V3 fragment gave better reconstructions than p17, but a combined data set of both p17 and V3 performed best. The accuracy of the phylogenetic methods justifies their use in HIV-1 research and argues against convergent evolution and selective transmission of certain virus variants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A number of studies have noted that nucleotide substitution rates at the chloroplast-encoded rbcL locus violate the molecular clock principle. Substitution rate variation at this plastid gene is particularly pronounced between palms and grasses; for example, a previous study estimated that substitution rates in rbcL sequences are approximately 5-fold faster in grasses than in palms. To determine whether a proportionate change in substitution rates also occurs in plant nuclear genes, we characterized nucleotide substitution rates in palm and grass sequences for the nuclear gene Adh. In this article, we report that palm sequences evolve at a rate of 2.61 x 10(-9) substitution per synonymous site per year, a rate which is slower than most plant nuclear genes. Grass Adh sequences evolve approximately 2.5-fold faster than palms at synonymous sites. Thus, synonymous rates in nuclear Adh genes show a marked decrease in palms relative to grasses, paralleling the pattern found at the plastid rbcL locus. This shared pattern indicates that synonymous rates are correlated between a nuclear and a plastid gene. Remarkably, nonsynonymous rates do not show this correlation. Nonsynonymous rates vary between two duplicated grass Adh loci, and nonsynonymous rates at the palm Adh locus are not markedly reduced relative to grasses.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The period (per) gene in Drosophila melanogaster provides an integral component of biological rhythmicity and encodes a protein that includes a repetitive threonine-glycine (Thr-Gly) tract. Similar repeats are found in the frq and wc2 clock genes of Neurospora crassa and in the mammalian per homologues, but their circadian functions are unknown. In Drosophilids, the length of the Thr-Gly repeat varies widely between species, and sequence comparisons have suggested that the repeat length coevolves with the immediately flanking amino acids. A functional test of the coevolution hypothesis was performed by generating several hybrid per transgenes between Drosophila pseudoobscura and D. melanogaster, whose repetitive regions differ in length by about 150 amino acids. The positions of the chimeric junctions were slightly altered in each transgene. Transformants carrying per constructs in which the repeat of one species was juxtaposed next to the flanking region of the other were almost arrhythmic or showed a striking temperature sensitivity of the circadian period. In contrast, transgenes in which the repeat and flanking regions were conspecific gave wild-type levels of circadian rescue. These results support the coevolutionary interpretation of the interspecific sequence changes in this region of the PER molecule and reveal a functional dimension to this process related to the clock’s temperature compensation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pervasive role of circadian clocks in regulating physiology and behavior is widely recognized. Their adaptive value is their ability to be entrained by environmental cues such that the internal circadian phase is a reliable predictor of solar time. In mammals, both light and nonphotic behavioral cues can entrain the principal oscillator of the hypothalamic suprachiasmatic nuclei (SCN). However, although light can advance or delay the clock during circadian night, behavioral events trigger phase advances during the subjective day, when the clock is insensitive to light. The recent identification of Period (Per) genes in mammals, homologues of dperiod, which encodes a core element of the circadian clockwork in Drosophila, now provides the opportunity to explain circadian timing and entrainment at a molecular level. In mice, expression of mPer1 and mPer2 in the SCN is rhythmic and acutely up-regulated by light. Moreover, the temporal relations between mRNA and protein cycles are consistent with a clock based on a transcriptional/translational feedback loop. Here we describe circadian oscillations of Per1 and Per2 in the SCN of the Syrian hamster, showing that PER1 protein and mRNA cycles again behave in a manner consistent with a negative-feedback oscillator. Furthermore, we demonstrate that nonphotic resetting has the opposite effect to light: acutely down-regulating these genes. Their sensitivity to nonphotic resetting cues supports their proposed role as core elements of the circadian oscillator. Moreover, this study provides an explanation at the molecular level for the contrasting but convergent effects of photic and nonphotic cues on the clock.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To clarify the molecular basis of the photoperiodic induction of flowering in the short-day plant Pharbitis nil cv Violet, we examined changes in the level of mRNA in cotyledons during the flower-inductive photoperiod using the technique of differential display by the polymerase chain reaction. A transcript that accumulated during the inductive dark period was identified and a cDNA corresponding to the transcript, designated PnC401 (P. nil C401), was isolated. RNA-blot hybridization verified that levels of PnC401 mRNA fluctuated with a circadian rhythm, with maxima between 12 and 16 h after the beginning of the dark period) and minima of approximately 0. This oscillation continued even during an extended dark period but was damped under continuous light. Accumulation of PnC401 mRNA was reduced by a brief exposure to red light at the 8th h of the dark period (night-break treatment) or by exposure to far-red light at the end of the light period (end-of-day far-red treatment). These results suggest that fluctuations in levels of PnC401 mRNA are regulated by phytochrome(s) and a circadian clock and that they are associated with photoperiodic events that include induction of flowering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Substantial progress has been made in understanding the genetic basis of temperature-compensated circadian clocks. Ultradian rhythms, with a period shorter than 24 h, are at least as widespread as circadian rhythms. We have initiated genetic analysis of defecation behavior, which is controlled by an ultradian clock in Caenorhabditis elegans. The defecation motor program is activated every 45 sec, and this rhythm is temperature compensated. We describe mutations in 12 genes that either shorten or lengthen the cycle period. We find that most of these mutations also disrupt temperature compensation, suggesting that this process is an integral part of the clock. These genes open the way for molecular genetic dissection of this ultradian clock.